<p>The Milky Way experienced several merger events which left their imprints on the stellar halo. In particular, it is known that a major merger happened during the Galaxy’s first Gyrs and, likely, perturbed its disc-shape structure. In order to fully understand the effects of such an event, we need to know the chemical and dynamical characteristics of the young Milky Way, i.e. before the major m...</p>
<p>In this talk I will discuss the geometry, structure and morphological transformation of star-forming and quiescent galaxies from the peak of cosmic star formation to the present day. Resolved observations from multiple wavelengths and tracers enable us to reconstruct where stars form within galaxies and how stellar distributions are assembled, while simultaneously revealing insights into the e...</p>
<p>One commonly accepted idea for the origin of the large-scale structure in the Universe is that the minute quantum fluctuations were stretched to macroscopic scales as a consequence of nearly exponential expansion of spacetime during the “cosmic inflation”. Cosmic inflation predicts primordial density fluctuations that are consistent with the observed CMB temperature fluctuations. It also pred...</p>
<p>Dark matter — established via various cosmological and astronomical observations — is a significant constituent of our Universe and remains one of the most outstanding mysteries of modern physics. The mass range of potential dark matter candidates covers more than 30 orders of magnitude. In the past, researchers have primarily focused on searching for GeV-TeV dark matter (WIMP) via nuclear re...</p>
<p>The distance-inclination degeneracy limits gravitational-wave parameter estimation of compact binary mergers. Such a degeneracy can be partially broken by including higher-order modes or precession when modeling the waveform of a binary that contains a black hole. But what about binary neutron stars, for which these effects are suppressed? In this talk, I will introduce a new parameterization o...</p>
<p>As an important tracer of star formations and chemical enrichment in galaxies, HII regions play a fundamental role in our understanding of galaxy evolution. To infer the physical conditions of HII regions in galaxies, many diagnostic methods based on the emission-line spectra of the ionized gas have been proposed. Meanwhile, people have constructed theoretical models to describe the ionization ...</p>
<p>Evolutions of stars, black hole accretion as well as interactions between stars and black holes play an important role in various astrophysical systems, such as supernova, X-ray binaries, AGNs as well as various transient phenomena. I will discuss some long standing issues related to massive star and black hole systems. Then I will describe some examples on how we can make progress on some of ...</p>
<p>A grand challenge for modern astrophysics is to understand star and galaxy formation in the first billion years of cosmic history. In particular, the first generation of stars born in extremely metal-poor/free primordial gas, the so-called population III (Pop III), are believed to have distinct features compared with present-day stars: They are more likely to become massive black holes due thei...</p>
<p>I will discuss some recent progress in 21cm line intensity mapping within the SKA cosmology science working group. In particular, we report the first direct detection of the cosmological power spectrum using 21cm line (2301.11943), derived from interferometric observations with the L-band receivers of the MeerKAT radio telescope. I review the challenges in analysing the MeerKAT data and present...</p>
<p>At the heart of every galaxy cluster is the brightest central galaxy (BCG). The central location of the BCG along with its unique formation history yield the underlying galaxy-dark matter halo connection. This statistical correlation allows us to enhance our understanding of the assembly and evolution of BCGs over cosmic time. However, we gain further insight into the formation and evolution of...</p>